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Abstract

Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Document-

ing the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish cli-

mate impacts in noisy data and to understand interactions between climate variability and other drivers of change.

To assist the development of reliable statistical approaches, we review the marine climate change literature and pro-

vide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that

examined relationships between climate change and marine ecological variables. Of the articles with time series data

(n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified sev-

eral common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of

change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key met-

rics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consider-

ation of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate

response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial auto-

correlation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies,

these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance

global knowledge of climate impacts and understanding of the processes driving ecological change.
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Introduction

Although our knowledge of the impacts of anthropo-

genic climate change on biological systems is informed

by the intersection of scientific theory, modelling, experi-

ment and observation, it is only through observation that

we can track the response of the biosphere to climate

change. Understanding the extent of climate change

impacts on ecosystems and their interactions with other

anthropogenic stressors is a key requirement for inform-

ing policy debates on climate change and devising adap-

tivemanagement responses (Harley et al., 2006; Edwards

et al., 2010). Our knowledge of observed biological

impacts of climate change is biased towards terrestrial
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systems (Richardson & Poloczanska, 2008); the analysis

of observed climate impacts by the Intergovernmental

Panel on Climate Change (2007) (their Figure 1.9) also

indicates geographical imbalance indata availability.

Identifying the mechanisms driving change is espe-

cially challenging with marine biological data, because

of short-term abiotic and biotic influences superim-

posed upon natural decadal climate cycles in the ocean-

atmosphere system that can mask or accentuate climate

change impacts (Hare & Mantua, 2000; Beaugrand

et al., 2008; Möllmann et al., 2008). Anthropogenic driv-

ers other than climate change, including eutrophication

(Allen et al., 1998), fishing (Hsieh et al., 2008; Genner

et al., 2010), pollution (Perry et al., 2005) and species

introductions (Loebl et al., 2006) also interact with and

complicate apparent ecological responses to climate

change. Spatial variability in anthropogenic impacts

and climate change (Halpern et al., 2008) mean that pre-

dictions from one region do not necessarily transfer to

other regions. Furthermore, the availability of long time

series suitable for generating baselines and for reliably

testing hypotheses regarding climate impacts has been

limited by funding and logistic issues (Duarte et al.,

1992; Southward et al., 2005; Edwards et al., 2010).

Despite these challenges, a long history of research has

examined the influence of climate and other drivers on

marine fisheries and ecosystem dynamics (ICES 1948,

Colebrook, 1986; Ohman & Venrick, 2003; Southward

et al., 2005). Climate change ecology has emerged from

this research (e.g. Hawkins et al., 2003; Litzow & Cian-

nelli, 2007) and seeks to determine the extent of anthro-

pogenic climate change impacts on ecosystems.

Appropriate statistical analyses are critical to ensure a

sound basis for inferences made in climate change ecol-

ogy. Many ecologists are trained in classical approaches

more suited to testing effects in controlled experimental

designs than in long-term observational data (Hobbs &

Hilborn, 2006). Observational data are collected in space

and time, so replicates may show strong dependences

or autocorrelation effects and explanatory variables are

often confounded (Legendre et al., 2002). Approaches

that do not account for these issues may increase the

risk of incorrect inferences and reduce power to detect

relationships between climate variables and biological

responses. Inference strength will also depend on the

summary statistic chosen to represent biological

responses, such as a species’ range edges or centre. Cli-

mate change ecology requires a greater awareness of

statistical issues and the appropriate tools for obtaining

reliable inferences from limited data sources.

Here, we provide suggestions for making defensible

inferences in climate change ecology. We reviewed the

literature on observed responses of biota to climate

change to assess and describe current statistical prac-

tices in marine climate change ecology. On the basis of

our assessment, we identify areas where the application

of appropriate statistical approaches could be strength-

ened, including testing other potentially important

drivers of change and their interactions with climate,

consideration of temporal auto-correlation in time ser-

ies, consideration of spatial heterogeneity and reporting

of rates of change. We then provide suggestions for reli-

able statistical approaches that consider limitations of

available data and highlight individual studies where

statistical analyses were particularly innovative and

reliable. We emphasize the strengths of individual

studies to underscore lessons for the broader research

community. While our focus is marine, our suggestions

for statistical approaches are equally relevant for cli-

mate change research on land. Application of defensi-

ble statistical approaches will provide a more rigorous

foundation for climate change ecology, improve predic-

tive power and speed delivery of science to policy-mak-

ers and managers.

Assessment of current statistical approaches in

climate change ecology

We searched the peer-reviewed literature on climate

change ecology for articles examining climate change

impacts on the basis of observational studies. Our liter-

ature search was comprehensive and multi-faceted:

extensive searches using Web of Science© and Google

Scholar; citation searches; assessing every article pub-

lished in key journals (Global Change Biology, Marine

Ecology Progress Series, Progress in Oceanography,

Global Ecology and Biogeography), analysis of refer-

ence lists in comprehensive reviews; assessment of

studies from existing databases (Rosenzweig et al.,

2008; Tasker, 2008; Wassmann et al., 2011) and our

knowledge of various marine habitats. Studies were

retained for analysis if the authors assessed the impacts

of climate change on marine taxa, if there were data

over multiple years after 1960 (when signals of anthro-

pogenic climate change first became apparent), and if

the primary climate variable investigated (e.g. tempera-

ture, sea ice) showed a change that the authors consid-

ered consistent with the physical impacts of

anthropogenic climate change. We thus included stud-

ies with biological responses that were consistent or

inconsistent with climate change. Only studies with

observational data were considered for the review;

therefore, studies with only experimental or modelling

results were excluded. This process resulted in 267

studies published from 1991 to 2010, 186 of which used

regularly sampled time series data. Time series gener-

ally started during or after the onset of anthropogenic

warming in the 1960s (82% of time series studies in our
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review); however, several started before the 1960s (e.g.

Ohman & Venrick, 2003; Reid et al., 2003, Southward

et al., 2005). Data from palaeo-ecological studies dated

as far back as 1700s (Field et al., 2006). For the time ser-

ies studies, we recorded the type of statistical analysis

used to relate climate and ecological variables, whether

non-climatic factors were considered in analysis, and

the methods used to deal with auto-correlation.

The review showed an accelerating number of stud-

ies with time series data published in climate change

ecology through time (Fig. 1a), consistent with the

overall increase in climate change impacts studies pub-

lished through time (Hoegh-Guldberg & Bruno, 2010).

The proportion of studies using statistics to test rela-

tionships between climate and ecological variables has

increased, doubling since before 2000 (Fig. 1b). The per-

centage of time series studies that accounts for or con-

siders temporal auto-correlation remained around 65%

(Fig. 1c). Both spatial analysis and modelling that

accommodates non-climatic factors in addition to cli-

mate variables show increases over time, although rates

of use remain low (Fig. 1d,e). Studies that report met-

rics on rates of change (e.g. km shifted per decade), use-

ful for comparative studies and climate impacts

syntheses, have also increased, although currently, only

41% of time series studies report these metrics (Fig. 1f).

Together, the trends in use of statistics and reporting

suggest that climate change ecologists have gradually

been increasing their use of more reliable statistical

methods, but overall, there is room to improve adop-

tion and application of these methods.

To assess how statistical analyses might be currently

perceived in the climate change ecology literature and

whether those using more reliable statistics might be

more highly cited, we recorded the number of citations

each paper from the database received (on 12th Febru-

ary 2011) and tested whether citations were related to

the statistical characteristics of the analysis. We used

several binary predictors to reflect characteristics and

included: whether temporal autocorrelation was

accounted for; whether spatial analysis was conducted;

whether metrics on rates of change were reported;

whether multiple predictors were considered. Publica-

tion year was included as a covariate (using a cubic

spline) to account for the growth of citations over time.

We used a generalized linear model with negative bino-

mial errors (Venables & Ripley, 2002) to model the

effect of statistical characteristics on citation rate.

Generally, it might be expected that more reliable sta-

tistical approaches and reporting of metrics would
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improve a study’s usefulness in the literature and hence

the citation rate. Indeed, studies that use spatial meth-

ods may be cited slightly more often (Fig. 2c). Further-

more, studies that reported metrics on rates of change

may also have slightly higher citation rates, suggesting

that these studies are used more often in the literature

because of the ease of comparison (Fig. 2e). Relative to

the effect of years in print, the improvement in citations

was slight and studies that accounted for temporal

autocorrelation or modelled multiple factors were not

cited more often (Fig. 2b,d).

The results of our review and citation analysis may

indicate both inadequate awareness of appropriate sta-

tistical techniques for analysis of observational data and

a lack of suitable data to support more sophisticated

analyses. That studies employing more reliable statisti-

cal approaches were not more highly cited indicates a

need for greater scrutiny of statistical approaches in

marine climate change ecology. Data limitations are also

important, and greater funding of marine ecological

time series would allow a more comprehensive analysis

of climate change impacts (Duarte et al., 1992; South-

ward et al., 2005; Edwards et al., 2010). Nevertheless,

there are studies in the marine climate change ecology

literature and from other research areas that illustrate a

range of effective statistical approaches for maximizing

the utility of available data. In the following sections,

we use these studies as examples of how to make the

most of available data, address statistical issues and as a

basis for suggesting reliable methods for statistical anal-

ysis in climate change ecology.

Data requirements for assessing climate change

impacts

Strongest inferences on impacts of climate change

require observational data that cover long time spans

and large spatial scales (Parmesan et al., 2011). How-

ever, funding constraints on the extent of data collection

have limited the length of time series and their spatial

extent (e.g. Southward et al., 2005; Edwards et al., 2010).

Some examples of long time series that have persisted

through funding cycles are the Continuous Plankton

Recorder survey in the North Atlantic and North Pacific

(Colebrook, 1986; Reid et al., 2003); the California Coop-

erative Oceanic Fisheries Investigations in the Califor-

nian Current (Ohman & Venrick, 2003); and fish,

zooplankton and rocky shore surveys conducted from

Plymouth, UK (Southward et al., 1995, 2005).

Longer and higher frequency time series data pro-

vide greater opportunities to investigate the effects of

climate and anthropogenic impacts on ecosystems. In

the English Channel, long-term cycles of rocky shore

and pelagic fish communities coincide with cycles of
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cold and warm periods, providing strong evidence that

modern shifts to warmer-water communities are a con-

sequence of warming in the region (Hawkins et al.,

2003; Southward et al., 2005). Likewise, longer time ser-

ies are required to provide baselines for assessing the

impacts of anthropogenic climate change. Data from

the English Channel demonstrate that while communi-

ties have cycled naturally over long periods, recent

changes have exceeded those observed in the last warm

period, in the 1950s, and are probably a result of

anthropogenic climate change (Mieszkowska et al.,

2007). Distinguishing the effects of multiple drivers also

requires data that allow contrasts between strengths of

each driver, because if the drivers co-vary strongly, it

will be difficult to determine their individual effects. In

this case, longer time series or data collected over a lar-

ger spatial scale potentially provide greater opportuni-

ties for sampling contrasts.

Comparing historical and contemporary data sets

Baselines for assessing climate impacts for data-poor

regions or taxa can be obtained by conducting surveys

in sites where historical data are available and compari-

sons can be made between present and historical data.

While most studies in our database were based on reg-

ularly collected samples, samples collected at irregular

intervals or those comparing two distinct periods in

time were also common (Fig. 3d).

Data collection designs that pre-date the advent of

modern statistical approaches pose challenges to com-

parisons with contemporary data sets (Tingley & Beis-

singer, 2009). Differences in survey methods between

past and present programs may confound biological

responses to climate change. Similarly, a major problem for

range-shift studies is determining the difference between

true absences of species at a site and false absences that

result from missed detection or historical records

restricted to few species (Tingley & Beissinger, 2009).

Nevertheless, historical data are valuable and should

not be discarded because they pose challenges to analy-

sis. Indeed, appropriate statistical approaches can assist

with the integration of old and contemporary data.

Often, careful consideration of changes in data collec-

tion methodology can identify biases that can then be

factored out in analysis, for instance, by comparing

changes in relative rather than absolute abundances of

species (Fodrie et al., 2010). Tingley & Beissinger (2009)

review approaches for comparisons of historical and

contemporary data in range shift studies. In particular,

N
o.

st
ud

ie
s

0

20

40

60

80

100

Corr
./re

g.

Mult
ipl

er 
eg

. / 
GLM GAM

PCA

Othe
rm

 ul
tiv

ari
ate

Exp
eri

men
tal

te 
st

Othe
r

n = 139

(a) (b)

(c) (d)

N
o.

st
ud

ie
s

0

20

40

60

80

100

Not 
co

ns
ide

red

Adju
st 

DF

AR m
od

el

Detr
en

d /
 di

ffe
ren

ce

Disc
us

se
d o

nly

n = 139

N
o.

st
ud

ie
s

0

20

40

60

80

100

Data
 gr

ou
pe

d

Spa
tia

l a
na

lys
is

Not 
co

ns
ide

red

n = 88

N
o.

st
ud

ie
s

0

50

100

150

200

Reg
ula

r s
am

pli
ng

Two p
eri

od
s

Irr
eg

ula
r s

am
pli

ng

n = 267

Fig. 3 Number of studies that (a) use different methods for relating climate and biological time series; (b) use different methods for

adjusting for temporal auto-correlation; (c) group data, use spatial analysis or do not consider spatial autocorrelation, and (d) use differ-

ent data types. The number of relevant studies included for each figure is indicated. Studies that applied multiple different types of

methods were counted once for each method. GLM, generalized linear model; GAM, generalized additive model; PCA, principal com-

ponents analysis.

© 2011 Blackwell Publishing Ltd, Global Change Biology, 17, 3697–3713

QUANTITATIVE CLIMATE CHANGE ECOLOGY 3701



methods for estimating detection probability of a spe-

cies are useful for distinguishing false and true

absences to provide more accurate mapping of range

shifts. The lack of temporal continuity in comparisons

with historical data also limits the ability to analyse the

relationship between climate variables and species dis-

tribution. Using historical and contemporary data on

seaweed distribution, Lima et al. (2007) apply a ran-

domization procedure to explore whether range differ-

ences between the two time-periods are significantly

greater than would be expected on the basis of dis-

tances between modern sub-populations. This

approach allows Lima et al. (2007) to make stronger

inferences about observed changes in range size.

Caution is required in the interpretation of differ-

ences between two points in time because patterns of

variability in the intervening years are not captured.

For instance, in the North-East Atlantic, comparisons

between the 1960s and 2005 exaggerate warming

because of unusually cold years in the 1960s (Hawkins

et al., 2003; Southward et al., 2005). Although two-point

comparisons have been applied to a broad range of taxa

in the literature, the most reliable comparisons will

come from taxa with low inter-annual variability rela-

tive to the magnitude of change between the two time

periods. The relative magnitude of inter-annual vari-

ability can sometimes be estimated by comparison to

species with similar ecology or directly from data if

multiple years are available at analysis start or end

points (e.g. Sagarin et al., 1999 had multiple years of

data, from 1931–1933 and 1993–1996). A further disad-

vantage of point comparisons is the low power for dis-

criminating among multiple drivers of change because

most drivers will have changed between historical and

present studies.

Nevertheless, point comparison analysis can at least

partially overcome the disadvantages of low temporal

resolution by including data on many species. For

example, Fodrie et al. (2010) repeated historical surveys

and compared abundances of fish in seagrass mead-

ows between the 1970s and the present day. The com-

munity analysis revealed that cold-water species were

less likely and warm-water species more likely to be

observed in the present day, a result consistent with

mechanisms of a climate change impact. Furthermore,

a t-test comparing the pooled abundance of warm-

water species between the historical period and the

present day confirmed that warm-water species had

increased in relative abundance. A final t-test showed

a significant warming in regional temperature. It is

important to note that the historical and recent period

studied by Fodrie et al. (2010) were sufficiently sepa-

rated in time (1970s vs. 2000s) to allow for a clear

warming signal.

Retrospective data in climate impact studies

Given the relative paucity of long biological and ecolog-

ical time series, retrospective methods for obtaining

data to test for impacts of climate change provide a rich

and relatively untapped resource. In particular, fast

sedimentation rates in many areas of the ocean pre-

serve micro-organisms over centuries to millennia and

these sedimentary records can be examined in relation

to recent climate changes. We found 13 retrospective

studies in the literature review of climate change ecol-

ogy and these included studies of fish otoliths

(Thresher et al., 2007), calcifying plankton from sedi-

ment cores (Field et al., 2006) and coral cores (De’ath

et al., 2009). Retrospective studies have great potential

importance for assessing shifts in patterns of biological

variability before and after the onset of warming,

because they date to before detection of global warming

signals in the 1960s.

Field et al. (2006) used sediment cores from the Cali-

fornian Current region to examine long-term changes

in the planktonic foraminifera community. Foraminfera

preserve well in sedimentary records because of their

calcium carbonate shell. The time series dated back to

before global industrialization and demonstrated a shift

from a cold-water community to a warm-water com-

munity around the 1970s that was unprecedented in

the past 200 years. Furthermore, the shift in community

structure showed a strong correlation with reconstruc-

tions of sea surface temperature.

A major shortcoming of many retrospective studies is

the limited number of samples or sediment cores that

can be obtained. So while temporal coverage may be

high, spatial or sample-based replication may be low.

The Field et al. (2006) study was based on just a few

sediment cores, due to the difficulty of obtaining deep-

sea cores. This limits the ability to examine temporal

patterns in climate impacts over broad spatial scales

using retrospective analyses.

Addressing statistical issues

A major challenge in statistical analysis is simulta-

neously minimizing risks of attributing causality to

simple associative relationships and of missing rela-

tionships that are the result of real ecological processes.

Properly formulated statistical tests of the relationship

between the ecological variable of interest and a vari-

able indicative of climate change help minimize these

risks. Of the time series studies we reviewed, 47 (25%)

did not use statistical tests to relate ecological trends to

climate variables.

Aside from using properly formulated statistical

tests, these errors can be minimized by formulating
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plausible mechanisms for the form, direction and mag-

nitude of biological change. An understanding of mech-

anisms helps to build confidence that statistically weak

but mechanistically plausible relationships are sound

(for instance, when data are limited) and, similarly,

helps to exclude statistically significant but spurious

relationships. For example, inferential strength from

observational studies can be improved by coupling the

study with appropriate experimental studies (three

studies in our review, Chevaldonné & Lejeusne, 2003;

Iglesias-Rodriguez et al., 2008; Halloran et al., 2008).

Chevaldonné & Lejeusne (2003) showed long-term

declines in cold-water mysid abundances in Mediterra-

nean caves attributable to warming. They were able to

grow these mysids in the laboratory to demonstrate

that contemporary warming was beyond their pre-

ferred temperature range. This approach is potentially

a powerful way to investigate the mechanisms driving

climate responses in organisms amenable to experimen-

tation (e.g. intertidal invertebrates, macro-algae and

corals). Hewitt et al. (2007) provide a comprehensive

review on strategies for integrating small-scale, manip-

ulative studies with large-scale correlative studies.

Accommodating multiple factors in analyses

When investigating ecosystem change, a host of anthro-

pogenic impacts (including climate) and natural

dynamics are confounded, complicating interpretation

and potentially leading to spurious conclusions when

important drivers are not included in analysis. Statisti-

cal analyses in our review were predominately univari-

ate (correlation or simple linear regression, Fig. 3a),

which do not allow consideration of multiple factors

and their interactions. Only 24 time series studies (13%)

in the literature reviewed explicitly considered factors

other than climatic variables in statistical analysis (e.g.

Hsieh et al., 2008; Poloczanska et al., 2008). At the sim-

plest and coarsest level, the often-strong trends in the

primary climate variables considered (temperature, sea

ice) can be correlated with increases in anthropogenic

threats of eutrophication, fishing and pollution, as

increases in both CO2 emissions and human threats are

a consequence of increases in human population and

activity (Halpern et al., 2008). The lack of inclusion of

alternative factors also implies that key interactions

between drivers, which could be important for predict-

ing and managing ecosystem responses to climate

change, are not being addressed.

Of the studies that consider multiple factors in analy-

sis, generalized linear modelling (including multiple

regression), a method common in the broader ecologi-

cal literature, was the most popular (Fig. 3a, e.g. Dulvy

et al., 2008). Generalized additive models were also

used by seven studies. There is already an extensive lit-

erature discussing application of these methods to

modelling multiple factors and their interactions (see

Table 1 for more details) and therefore we describe two

examples below where innovative approaches were

used to understand the influence of multiple explana-

tory variables.

Along with climate change, fishing pressure is argu-

ably the most widespread human impact on marine

ecosystems (Halpern et al., 2008). Unfortunately, data

on exploitation rates often do not exist or are difficult to

obtain (but see Dulvy et al., 2008; Genner et al., 2010).

Hsieh et al. (2008) used a novel approach to overcome

the lack of data on temporal dynamics of exploitation

rate. They analysed changes in the distribution of larval

fish under ocean warming. To account for exploitation

rates, they conducted a comparative analysis of the

effects of climate on the spatial distribution of exploited

and unexploited fish species. By comparing impacts of

climate on species with similar life-history traits, they

were able to partly control for effects introduced by dif-

ferences among species, and focus on impacts of exploi-

tation and climate on fish distribution. Importantly,

their analysis demonstrated a synergism between

climate and fishing impacts, with exploited species

being more sensitive to climate-driven range shifts than

unexploited species. As more studies incorporate

climate change and other human threats into their

statistical models, we should develop a greater under-

standing of how we can manage our marine systems to

minimize the effect of climate change.

Considering multiple factors may also help test com-

peting hypotheses regarding the structure of underly-

ing relationships between a species, climate and its

ecosystem. Analysis of multiple hypotheses is also

important for assessing uncertainty in the outcomes of

climate change impacts. Hobbs & Hilborn (2006) pro-

vide a useful guide on how multiple model formula-

tions can be tested against observed data. One

approach for multi-model inference is to develop struc-

tured models using path analysis and then to compare

their ability to predict observations (Table 1). For exam-

ple, Poloczanska et al. (2008) investigated the recruit-

ment of two barnacle species in relation to warming

temperatures by constructing a hierarchy of models of

increasing complexity. Different models considered the

response of each species to warming individually and

including interactions between species such as resource

and interference competition. They found that climate

change may be impacting directly one species, which

was, in turn, impacting its competitor via interference

competition. In this case, testing the ability of different

models to predict observations provided a more reli-

able assessment of the climate change signal by identi-
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ö
ll
m
an

n
et

al
.

(2
00

8)
,
B
ea
u
g
ra
n
d
&

K
ir
b
y
(2
01

0)
,
K
ir
b
y
&

B
ea
u
g
ra
n
d
(2
00

9)
,

H
er
m
an

t
et

al
.(
20

10
),

W
ia
fe

et
al
.(
20

08
)

P
y
p
er

&
P
et
er
m
an

(1
99

8)

N
o
n
e
k
n
o
w
n

T
em

p
o
ra
l

au
to
co
rr
el
at
io
n
an

d

sp
u
ri
o
u
s
tr
en

d
s

A
u
to
re
g
re
ss
iv
e
m
o
d
el
s

B
ro
d
eu

r
et

al
.(
20

08
)

Z
u
u
r
et

al
.(
20

09
)

F
u
n
ct
io
n
‘g
ls
()
’
in

th
e

‘n
lm

e’
p
ac
k
ag

e
an

d

fu
n
ct
io
n
‘a
r(
)’

A
u
to
re
g
re
ss
iv
e
m
o
v
in
g
-

av
er
ag

e
m
o
d
el
s
an

d

A
u
to
re
g
re
ss
iv
e
in
te
g
ra
te
d

m
o
v
in
g
-a
v
er
ag

e
m
o
d
el
s

N
o
n
e

L
eg

en
d
re

&

L
eg

en
d
re

(1
99

8)
,

Z
u
u
r
et

al
.(
20

09
)

F
u
n
ct
io
n
‘g
ls
()
’
in

th
e

‘n
lm

e’
p
ac
k
ag

e
an

d

fu
n
ct
io
n
‘a
ri
m
a(
)’

C
o
in
te
g
ra
ti
o
n

N
o
n
e

K
ir
ch

g
ä
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fying both the direct and indirect mechanisms of the cli-

mate change impact.

Identifying spurious relationships and accounting for
auto-correlation in biological data

Temporal and spatial autocorrelation arise from non-

independence of observations and are a common fea-

ture of time series and geographical studies (Legendre

et al., 2002). Autocorrelation can be caused by factors

exogenous to the variables of interest, such as unknown

environmental effects on population size, and factors

endogenous to the variables of interest, such as the

effect of intra-specific competition species on popula-

tion size. Temporal autocorrelation is commonly strong

in marine ecological data. For instance, the same indi-

viduals will be counted in multiple years in population

counts of longer lived species and data from heavily

fished species are often strongly autocorrelated due to

effects of economic development of fishing fleets and

management regimes. Autocorrelation can occur over

multiple time-scales in a dataset, including seasonal

patterns at short time-scales and long-term trends due

to gradual changes in observation methods or evolu-

tionary change in the species studied. Similarly, spatial

autocorrelation can occur at a range of scales. For

instance, small-scale spatial autocorrelation may be

observed in species that aggregate to breed or where

individuals of a species disperse to avoid competition,

and large-scale autocorrelation may be present if

important environmental gradients are unspecified in

models.

A basic assumption of most inferential statistical

tests – that residuals are independently and identically

distributed – will be violated if residuals are autocorre-

lated. Thus, autocorrelation that is unaccounted for

can result in misleading inferences. In autocorrelated

data, each measurement does not contribute a full

degree of freedom to the analysis, so degrees of free-

dom in statistical tests are over-estimated, and this

inflates the Type-I error rate (falsely rejecting true null

hypotheses). For instance, Worm & Myers (2003) esti-

mated effective degrees of freedom from fisheries data,

and found that degrees of freedom may be inflated by

up to six times in cod–shrimp correlations if autocorre-

lation is not considered. In many cases, exogenous

autocorrelation may be removed if appropriate covari-

ates are included in the model. Alternatively, it is nec-

essary either to explicitly model the autocorrelation

structure, or to adjust degrees of freedom in statistical

tests (i.e. estimate the effective sample size, given the

autocorrelation) on the basis of the autocorrelation

structure (see Table 1 for how methods on detecting

autocorrelation).

In the review of the climate change ecology literature,

68 studies (49%) analysing biological changes over time

considered temporal autocorrelation (Fig. 3b). Further,

19 studies (21%) with data at multiple locations made

explicit use of spatial methods that either accounted for

spatial autocorrelation or modelled covariates spatially

(Fig. 3c). Most studies grouped spatial data, thus not

only avoiding issues with spatial autocorrelation, but

also potentially removing important ecological patterns

from analysis. In the following section, we discuss

examples from climate change ecology that deal with

temporal autocorrelation, spatial autocorrelation and

spatial patterns in statistical analyses (for details of

methods see Table 1). Many methods are common to

both types of autocorrelation and therefore we provide

references for further details.

Accounting for temporal autocorrelation and spurious
relationships

The simplest approach to deal with temporal autocorre-

lation is to remove autocorrelation by differencing the

climate and biological data series (subtract each data

point from next data point in the time series, Table 1)

over the autocorrelation time-scales prior to statistical

analysis (Pyper & Peterman, 1998). De-trending (sub-

tracting the long-term trend from each data point,

Table 1) may also be desirable to remove shared long-

term trends because time series commonly trend

without a causal link. However, removing trends can

reduce the power to detect real relationships (Pyper &

Peterman, 1998) and, in some cases, differencing or

detrending can increase the autocorrelation in a dataset.

For instance, if measurements in a time series are

independent, detrending the time series will create a

dependency among data points. Historically, such data

transformations were used to obtain datasets that

met the assumptions of the statistical tests available.

The advent of modern model-based approaches that

accommodate autocorrelation processes provides the

opportunity to avoid the shortcomings of data transfor-

mations.

When the climate–biological relationship is expected

to operate over longer time-scales, the data can be

smoothed using a filter before conducting statistical

tests such as regression. Smoothing reduces the influ-

ence of short-term variability that is not of primary

interest. For instance, Litzow & Ciannelli (2007) use a

smoother to examine the inter-annual relationships

among abundances of predators, prey and physical

conditions, and Dulvy et al. (2008) use a smoothing fil-

ter on their environmental data to capture the inte-

grated influence of the environment on species’

distribution over several years.
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A method of accounting for autocorrelation in corre-

lation tests that has gained particular favour in studies

of climate impacts on plankton and fish communities

(24 studies in all, e.g. Richardson & Schoeman, 2004;

Litzow & Ciannelli, 2007; Möllmann et al., 2008; Nye

et al., 2009; Beaugrand & Kirby, 2010), is to explicitly

adjust the degrees of freedom downwards relative to

the amount of temporal autocorrelation in the time

series, before calculating significance levels (Table 1).

Pyper & Peterman (1998) used simulated data to test

error rates for different methods of adjusting the

degrees of freedom on a significance test of correlation

coefficients. Their simulations indicated that methods

for adjusting degrees of freedom reduce the risk of

falsely attributing significance to a relationship without

the loss of power that de-trending the data may cause.

Thus, despite the greater technical knowledge required,

these approaches are generally preferable to de-trend-

ing the data before testing a correlation. Dale & Fortin

(2009) describe two straightforward methods for under-

taking such analyses in a spatial context.

Potentially, the most powerful procedure for

accounting for auto-correlation is to use an auto-regres-

sive model (Table 1). An auto-regression can be advan-

tageous over correlation approaches with adjusted

degrees of freedom because regression allows estima-

tion of the rate of change of the biological variable and

for multiple covariates to be considered simulta-

neously. Estimates of the autocorrelation structure may

also suggest mechanisms for its cause. Researchers

should carefully consider the mechanisms behind the

proposed term, rather than choosing an auto-regressive

model based on goodness of fit alone, because adding

an auto-regressive term to a model can reduce the

power to detect a change. For example, Brodeur et al.

(2008) consider the effect of sea ice extent and tempera-

ture on the biomass of jellyfish in the Bering Sea. Auto-

correlation in jellyfish biomass from 1 year to the next

was expected because the biomass of jellyfish in 1 year

should depend upon the biomass of animals reproduc-

ing in the previous year. Brodeur et al. (2008) used gen-

eralized additive modelling to build multiple models

that regress jellyfish biomass against climate variables,

whilst accounting for autocorrelation by using 1-year

lagged jellyfish biomass as a factor in the model. They

then compared the ability of the models to predict data

using a generalized cross-validation approach (Wood,

2006). As expected, jellyfish biomass in 1 year was

strongly positively associated with biomass in the pre-

ceding year. Sea ice and temperature were also corre-

lated with jellyfish biomass after accounting for the

autocorrelation effect. Their analysis thus revealed

potential interactions between climate and jellyfish

growth, without concerns that significance would be

spuriously inflated by temporal autocorrelation.

A major source of new methods for time series analy-

sis has been economics. The concept of cointegration

was developed by econometricians to allow inferences

on causality of long-term relationships without the loss

of power associated with differencing time series to

obtain stationarity (Engle & Granger, 1987). Two time

series are said to be cointegrated in the first order if the

residuals from a linear combination of the time series

are stationary (the mean does not change through

time). Tests for cointegration distinguish between time

series with independent stochastic trends and those

that share a long-term relationship (Table 1). For

instance, consider two time series for temperature and

fish recruitment. If both time series have an increasing

trend, we might difference the time series and correlate

the resulting series to test for a relationship. However,

if temperature really does drive long-term trends in

recruitment, then differencing the time series will

reduce the power to detect a real causal effect. Alterna-

tively, we could test for cointegration of the time series.

Cointegration of the time series would imply a causal

driver of the shared long-term trend between the time

series, whereas if the time series are not cointegrated,

then we have not properly accounted for a causal rela-

tionship.

Cointegration has also been extended to multivariate

and higher order analysis of time series with multiple

orders of integration (Kirchgässner & Wolters, 2007).

Cointegration proved extremely useful in the analysis

of economic time series, with Engle and Granger

awarded the 2003 Nobel Memorial Prize in Economic

Science for their contribution to time series analysis. It

is thus surprising that this approach has been almost

entirely ignored in ecological time series analysis. Inter-

ested readers should refer to Kirchgässner & Wolters

(2007) for an introduction to cointegration methods

accessible to ecologists.

Accommodating spatial patterns and autocorrelation
in biological data

One approach to account for spatial patterns in data is

to perform a meta-analysis of study regions (Worm &

Myers, 2003). Richardson & Schoeman (2004) analysed

the correlation between phytoplankton abundance and

sea surface temperature in a 45-year time series for

multiple areas of the North-East Atlantic. They found

no relationship in most areas when significance tests

were adjusted for temporal autocorrelation. However,

the study covered a gradient of mean annual tempera-

ture ranging from about 6 to 20 °C. Thus, Richardson &

© 2011 Blackwell Publishing Ltd, Global Change Biology, 17, 3697–3713
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Schoeman (2004) used meta-analysis to inspect the cor-

relation between mean annual temperature in each

region and the temporal abundance–temperature corre-

lation. The meta-analysis showed a significant negative

correlation, implying that temperature rise positively

impacted phytoplankton abundance in cold regions,

negatively impacted abundance in warm regions and

had little effect in intermediate regions. Such a result

was consistent with the proposed mechanism for cli-

mate impacts, with phytoplankton growth being lim-

ited by low temperature in cold regions and thermal

stratification in warm regions. Thus, the analysis of spa-

tial patterns in this study revealed ecologically impor-

tant signals, which would have remained hidden if the

data were aggregated.

An alternative approach to modelling spatial patterns

is to include spatial covariates in multiple regression or

generalized additive models (Table 1). De’ath et al.

(2009) analysed data on coral growth and calcification

using coral cores from 69 reefs across the Great Barrier

Reef, Australia. By measuring growth rings in coral

cores, calcification rates as far back as 1572 could be

estimated. De’ath et al. (2009) used a generalized addi-

tive model to determine whether there were long-term

trends in calcification and if calcification changes could

be related to temperature changes. Their study area

covered a significant spatial temperature gradient, so

they divided temperature into spatial and temporal co-

variates. Thus, they were able to distinguish between

the spatial effect of higher calcification rates in warmer

regions and the temporal effect of more variable calcifi-

cation rates during warmer years.

Spatial patterns in data cannot always be removed by

including additional covariates in analysis. Where this

spatial autocorrelation occurs, it should be considered

in statistical tests (Table 1). Richardson & Schoeman

(2004) took a simple approach and reduced spatial

autocorrelation in their meta-analysis by using only

spatially discontinuous sites. The downsides of this

approach are that data are excluded from analysis and

that it cannot account for spatial autocorrelation occur-

ring across larger areas. As with temporal autocorrela-

tion, spatial autocorrelation can also be estimated and

accounted for in tests. Mueter & Litzow (2008) com-

pared changes in the distribution of abundance of fish

species between two time periods. They fitted models

of spatial autocorrelation to their data (Pinheiro &

Bates, 2000) and found a weak spatial autocorrelation

that might inflate standard errors in statistical tests by

10%. Thus, to reduce the risk of detecting spuriously

significant distribution change, they added an addi-

tional 10% to the standard errors before testing.

Ideally, spatial autocorrelation would be included

explicitly as a process in a spatio-temporal model.

Examples include accounting for spatial structure in

error terms or response variables by adjusting the vari-

ance–covariance matrices in regressions or conducting

geographically weighted regressions (Kissling & Carl,

2008). We found no examples in the literature we

reviewed probably because such models are technically

challenging to develop. Data requirements can also be

intensive, with a need for data across numerous loca-

tions. For the technically inclined, Diggle & Ribeiro

(2007) provide a starting point for geostatistical analy-

sis.

Often, biological data are collected at discrete loca-

tions, where samples from the same location are

expected to be more similar than samples from differ-

ent locations, although the likely causes of sample

dependencies are unknown. De’ath et al.’s (2009) data

were replicated at discrete locations, with multiple cal-

cification measurements from each core and multiple

cores at each reef. If replicates from the same location

are treated as independent samples, they might spuri-

ously inflate the degrees of freedom in statistical tests.

Alternatively, pooling samples would considerably

reduce the sample size and the power to detect causal

relationships (Venables & Ripley, 2002; Table 1). De’ath

et al. (2009) accounted for the nested structure in the

data by including random effects for cores and reefs in

their generalized additive model. Calcification mea-

surements from the same core were treated as random

deviates from an overall core mean value and similarly

for reefs. Accounting for the nested structure allowed

reliable inferences on the temporal and spatial effects of

temperature while preserving the power of the analy-

sis. Random effects analyses are also useful when data

are too limited and spatially unresolved to properly

estimate spatial autocorrelation in a geo-statistical anal-

ysis.

Modelling changes in variability, cycles and periods

Most cases discussed so far have focussed on the effect

of climate change on trends in ecological response vari-

ables. Climate impacts may also be detected through

the examination of changes in the variability of ecologi-

cal responses, including changes in the magnitude, fre-

quency and period of ecological responses. Beaugrand

et al. (2008) examined variability in metrics for cod

recruitment and plankton community structure, size

and diversity in the North Atlantic. Spatial analysis of

these metrics revealed increased variability coinciding

near the mean annual 10 °C isotherm, potentially indi-

cating an ecological threshold separating different com-

munity types. Examination of the temporal variance in

the community metrics demonstrated increased com-

munity variance in an area as the water warmed and
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the 10 °C isotherm moved polewards through an area.

This increase in variance may indicate a shift in com-

munity composition to one that represents a more

southerly biogeographical province.

Large-scale climate cycles may also drive periodic

biological patterns. Sophisticated approaches have been

developed by physical scientists that allow time series

to be decomposed into their component cycles. These

methods may be particularly useful for the analysis of

highly temporally resolved long-term marine ecological

data, and allow the separation of long-term trends from

decadal cycles in the ocean. One flexible approach is

wavelet analysis (Torrence & Compo, 1998), which

decomposes a time series into time and frequency

domains, thus allowing examination of the dynamics of

dominant cycles in the data (Table 1). Jenouvrier et al.

(2005) applied wavelet analysis to time series of seabird

abundance, breeding success and environmental vari-

ables thought to affect seabird foraging success. They

showed that in the early 1980s, there was a shift in the

periodicity of both the seabird time series and the envi-

ronmental time series, coincident with large-scale ocean

warming. Thus, Jenouvrier et al. (2005) were able to

detect changes in population variability potentially dri-

ven by climate warming that might not have been

detected by examining trends in abundance or breeding

success.

Metrics of phenology and distribution

The interpretation of climate impacts may often be

assisted by deriving metrics of biological responses

from raw observations that are readily associated with

climate change. Overall, climate change is expected to

lead to a polewards migration of species’ biogeographi-

cal ranges and an advance in the timing of phenological

events (e.g. reproduction, migration). Derived metrics

have proved useful for meta-analyses in climate change

ecology. In particular, reports of rates of change in dis-

tribution (e.g. km decade�1 or km °C�1) or phenology

(days decade�1, days °C�1) are easily incorporated into

global meta-analyses and syntheses, including those by

the IPCC (2007). Despite the benefits, reporting of these

metrics is still not widespread in marine climate change

ecology (18 out of 55 phenology and distribution stud-

ies with regularly sampled data reported metrics of

change).

There is a range of analogous response metrics for

phenology or distribution, which have similar statistical

strengths and weaknesses. In studies of phenology,

metrics include timing of an event on the basis of a sin-

gle individual (e.g. arrival of the first individual), the

mean or median timing of the event, the timing of the

last event (e.g. departure of the last individual), or the

duration of the event. Similarly, analyses of distribution

shifts may use the range edges, range centre or range

size as an indicator of range shift. The statistic used to

represent the range or date changes should be carefully

considered.

There are a suite of indicators that are reliant upon

single individuals or single sites, such as the first indi-

vidual to breed, or the northernmost sighted individ-

ual. These are statistically weak indicators of

phenological change and distribution shifts because

they are dependent upon only a single individual or

site and ignore the majority of the population. More

reliable metrics of changes in phenology and distribu-

tion are based on data on populations, such as recoding

of the distribution of individual breeding dates in a

population, abundance across the range or presence at

different sites. In these cases, quantiles can be used to

indicate the beginning of an event or the edge of a

range. For instance, Juanes et al. (2004) analysed the

dates of arrival for salmon to breeding streams using

the cumulative dates of arrival of 25%, 50% and 75% of

all fish, and Greve et al. (2005) analysed the start and

end of the season using 15% and 85% of the annual

cumulative abundance thresholds for plankton.

Commonly, the spread of abundance across a spe-

cies’ distribution has been assumed to be normal, on

the basis of early macro-ecological theory (Brown,

1984). In this circumstance, mean spatial location (e.g.

mean latitude of occurrence) would be an appropriate

metric for the distribution centre. In reality, distribu-

tions of abundance may often be non-normal, in which

case, the most appropriate metric for representing a dis-

tribution centre will depend upon the spatial arrange-

ment of site presences and abundance (Sagarin et al.,

2006). For instance, Hsieh et al. (2009) analysed changes

in the mean and median distributions of larval fish, and

found that changes in the median were more reliable

than those of the mean, due to the influence of extreme

values on the mean.

Bimodal data can cause problems for standard statis-

tical tests and may occur commonly in phenological

data. For instance, plankton blooms may occur in both

spring and autumn in temperate regions (Edwards &

Richardson, 2004), and many intertidal species have

multiple spawning events (Moore et al., 2011). To deal

with bimodality, Edwards & Richardson (2004) split

the seasonal peaks into spring and autumn categories

and analysed both as separate responses. Moore et al.

(2011) used the 25th percentile to indicate the timing of

spawning, thus avoiding biases in the mean spawning

time caused by the bimodality of the data, but placing

emphasis on first spawning peak.

While statistics based on the range centre statistics

are popular for summarizing distribution data, it is

© 2011 Blackwell Publishing Ltd, Global Change Biology, 17, 3697–3713

QUANTITATIVE CLIMATE CHANGE ECOLOGY 3709



important to consider which aspect of a range is most

biologically relevant and provides the greatest ability to

distinguish the effects of climate change. For instance,

understanding the dynamics of the equatorward edge

of a species’ range may be important for conservation

of genetic diversity with global warming (Hampe &

Petit, 2005). If the data were summarized using a cen-

troid metric, this distinction may not be made. Multiple

leading range edges, such as those for intertidal species

on complex coastlines, may also provide greater oppor-

tunities for inferring the effects of climate change,

because multiple observations of range shifts can be

made for the same species within a reasonably small

area.

A further consideration is that the study region usu-

ally does not cover the entire range of a species, partic-

ularly for cosmopolitan marine species (e.g. Perry et al.,

2005; Hsieh et al., 2009; Nye et al., 2009). In this

instance, the measured distribution centre does not pro-

vide a reliable estimate of the actual distribution centre.

Most studies have addressed this issue by classifying

species as being in the northern, southern or central

parts of their ranges. Thus, the change in the mean

observed distribution can be interpreted in terms of the

biogeographical affinity of the species.

A final consideration for distribution shifts is

whether to analyse purely the latitudinal component of

a range shift, or the total distance of the range shift,

which may be greater if the shift has a longitudinal

component. In the oceans, temperature gradients are

not strictly north–south, so species should not be

expected to simply shift to higher latitudes in response

to warming. For instance, the northern North Sea cools

southwards, and species in this region may be moving

towards the equator with ocean warming (Perry et al.,

2005; Philippart et al., 2011). Thus, it may often be more

meaningful to analyse the total distribution shift and

report its direction in relation to prevailing temperature

gradients and direction of warming in the region. Fur-

thermore, some range shifts may be more evident as

changes in the organism’s depth distribution (Dulvy

et al., 2008). While few datasets resolve depth (only four

studies in the literature review analysed changes in

depth), the potential for depth changes to hide horizon-

tal distributional shifts should be considered, at least

when formulating expectations.

Community-wide studies

A major strength of Fodrie et al. (2010), as well as other

examples above (Jenouvrier et al., 2005; Field et al.,

2006; Hsieh et al., 2008; Genner et al., 2010), comes from

the analysis of data from multiple species. In fact, 197

(69%) of the studies in our review reported data from

more than one species. On ecological grounds, different

species are expected to respond to climate change in

different ways. Such differences could be expected

between cold-water and warm-waters species or

exploited and unexploited species. Analysis of commu-

nity data thus gives researchers greater opportunities

to test for changes that are consistent or inconsistent

with climate change, relative to other sources of vari-

ability that may confound analyses based on single spe-

cies.

Analyses of climate change impacts on communities

can proceed with a combination of single-species anal-

yses or with aggregated descriptors of community

structure, such as diversity or multivariate statistics. In

such studies, species-level impacts should also be

reported, because they facilitate inclusion of results

into syntheses. Without the reporting of species-level

change, impacts of climate on some taxa may be

underestimated by syntheses, or non-significant

changes missed. For instance, the study of changes in

distribution of 36 zooplankton species by Beaugrand

et al. (2002) was included as only six assemblages in

Parmesan & Yohe’s (2003) meta-analysis because spe-

cies-level changes were not reported in the original

paper. This tendency towards reporting only assem-

blage-level changes may lead to a bias in reporting

fewer but more consistent impacts for plankton com-

munities compared with higher trophic levels, which

are often analysed on a single-species basis. An addi-

tional consideration with community data is that phy-

logenetic similarity between species may result in

similar responses to climate change. Controlling for

phylogeny in studies of climate impacts is emerging as

a powerful approach for understanding how species’

traits determine climate change responses (Davis et al.,

2010).

Limitations on publication space in peer-reviewed

journals may preclude inclusion of species-level

impacts in the main body of a paper. Furthermore,

competition to publish in the journals with the greatest

impact also biases the published literature towards

reporting positive results (Møller & Jennions, 2001); in

the case of climate change ecology, this may mean

over-representation of biological changes that are con-

sistent with anthropogenic climate change. Both these

biases are a serious problem for synthesis and for pro-

gressing the assessment of climate impacts on marine

ecosystems. To overcome these issues, we recommend

that the data or meta-data on species-level changes be

provided in a repository, either as online supplemen-

tary material in the journal or an institutional reposi-

tory (e.g. Table 2). This will assist interpretation of

climate impacts and encourage re-analysis from differ-

ent viewpoints.
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Conclusions

We suggest that the issues discussed in this review

should be considered when planning and conducting

analyses in climate change ecology, and also when

interpreting the reliability of published results from

other studies. A summary of our suggestions is

included below and are ordered roughly according to

the sequence that they might be most useful. These sug-

gestions are equally applicable to marine and terrestrial

studies.

1 Consider how spatial and temporal resolution of data

will influence the strength of inferences about drivers

of change. For example, long time series with fre-

quent observations, over large regions and over mul-

tiple climate cycles provide an ideal basis for

interpreting recent anthropogenic climate change.

Longer term palaeo-ecological data can also provide

valuable baselines for assessing climate impacts.

2 Formulate alternative hypotheses for causal relation-

ships between the ecological and climate variables. In

some cases, observational studies can be coupled with

experimental studies that shed light on the mecha-

nisms driving change. In formulating alternative

hypotheses, consider important drivers of ecological

change, such as climate variability, ecosystem dynam-

ics, other anthropogenic drivers of change (e.g. eutro-

phication, overfishing) and interactive effects. Where

possible, data should be obtained on these drivers.

3 Identify response variables. Many different response

variables may be derived from some datasets. The

most statistically reliable response variables will gen-

erally have the largest sample size (e.g. using quan-

tiles of distribution limits rather than the northerly

most sighting of a single individual) and will be for-

mulated to address the proposed hypotheses (e.g.

north–south distributional changes may be irrelevant

in regions with east–west currents). Non-conven-

tional response variables may also reveal new pat-

terns, such as considering changes in ecological

variability rather than changes in the mean.

4 Formulate the identified processes as a statistical

model or a series of models. Ideally, the models will

include all drivers of change identified in step 2.

Where possible, model-based approaches should be

used rather than data transformations. Where tempo-

ral data cannot be obtained on key drivers, indirect

approaches can be useful, such as comparisons

among species. Furthermore, application of analytical

methods beyond those traditionally used by ecolo-

gists (i.e. correlation and linear regression) will shed

new light on the understanding of climate impacts.

Promising methods rarely used in ecology include

tests of cointegration, wavelets for the analysis of eco-

logical cycles and spatio-temporal models.

5 Temporal autocorrelation should be considered in

analysis if using time series data. Temporal autocor-

relation patterns can often be reduced using filters,

Table 2 Information on some online data repositories

Data repository Region Type of data Organization Website

BlueNet Australia Marine science data University of Tasmania www.bluenet.org.au

Data Archive for Seabed

Species and Habitats

(DASSH)

United

Kingdom

Benthic survey data Marine Biological

Association

www.dassh.ac.uk

DataOne Global All environmental data DataOne www.dataone.org

ICES* data centre Global Marine data, commercial

catch records and marine

meta-data

ICES www.ices.dk/datacentre/

Submissions/index.aspx

NCEAS† marine climate

impacts working group

Global Meta-data for marine

biological impacts of

climate change

NCEAS https://groups.nceas.ucsb.

edu/marine-climate-

impacts/provide-data

NOAA‡ Data Center Global Oceanographic and marine

biological data

NOAA www.nodc.noaa.gov

Reef Base Tropics Coral reef ecosystem primary

and meta-data

World Fish Centre www.reefbase.org

Paleobiology database Global Occurrence and taxonomic

data for any organism in

any geological age

Multiple, collaborative paleodb.org

*International Council for Exploration of the Sea.
†National Centre for Ecological Analysis and Synthesis.
‡National Oceanic and Atmospheric Administration.
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detrending or differencing. A more powerful

approach for two variables can be to adjust the

degrees of freedom in significance tests or to use a

test of cointegration. If multiple predictors may influ-

ence the response, autoregressive models may be

used and also allow estimation of rates of change.

6 Spatial autocorrelation and patterns should be con-

sidered if using spatial data. Spatial patterns can be

ignored in analysis by grouping or averaging the

data to a single value in space; however, this

approach reduces the information content of the data.

In some cases, meta-analysis, generalized additive

models, mixed-effects models and geostatistics can

be used to assist understanding the processes driving

spatial patterns. Where spatial non-independence of

data points cannot be accounted for by using covari-

ates, it can be modelled explicitly. For spatially con-

tinuous data, models of spatial autocorrelation or

spatial covariates can be used to account for non-

independence of data points. Mixed-effects models

can be used for data collected at discrete sites.

7 Metrics summarizing the rate-of-change for all spe-

cies studied should be reported. Species-level metrics

assist the uptake of the results of a study by other

researchers and help in building global understand-

ing of marine climate impacts. Registering data with

an online database is encouraged (Table 2).

Consideration of these suggestions should help cli-

mate change ecologists apply appropriate statistical

approaches to their data and afford them some confi-

dence in the robustness of their results. We hope that

this work will also encourage the re-analysis of

archived datasets using appropriate approaches. A

solid statistical basis for climate change ecology will

help advance policy debates on climate change,

improve predictions of impacts and aid the develop-

ment of strategies for adaptive management.
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